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Development of Verified Numerical Computations for Applications

Introduction

N

The purpose of this research is to develop a super high-performance
computing environment that can solve various challenging problems
caused by numerical errors. Concretely, we aim to introduce "the axis of
accuracy" into high-performance computing on post-K computer. For
this purpose, we establish a new standard for performance evaluation by
the use of fast verified numerical computations, accurate algorithms
with error-free transformations, and auto-tuning methods.

“ I Performance = Speed * Accuracy I
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An application in progress (joint work with K. Nakajima, Univ. Tokyo, supported by JHPCN)
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Cost for verification is comparable!

FVM discretization
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Error bounds are significantly
improved!

Dimension (Unit: 10K}
Loss of accuracy

Research Organization of Our Post-K Project

Numerical Targets

with dense matrices.

of problems.

A. Scalability: Obtain computed results with desired accuracy for up to one
million dimensional problems such as linear systems and eigenvalue problems

B. Adaptivity: Obtain error bounds of computed results within several to several
tens times slower than standard numerical methods, depending on the difficulty

C. Application: Show effectiveness of verified numerical computations in
practical applications in terms of scientific and social significance.
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Accurate Matrix-Matrix Multiplications on GPU

Introduction

LAPACK, is still under research.

Libraries for basic linear algebra operations, such as BLAS (Basic Linear
Algebra Subprograms), are one of crucial tools for numerical computations.
However, accuracy assurance for numerical linear algebra libraries, such as

We focus on the research of accuracy assurance, in particular, high
precision matrix-matrix multiplication (MMM).

Performance Result
Accuracy Comparison

Ozaki Method

By using error free
transformation, Ozaki method
can establish high precision for
MMM with extremely dispersed
elements. ¢

If dispersion of elements of
matrix is large, then sparse
matrix computation can be
utilized.

C, e

q

A Matrix-Matrix #
Multiplications A B

Summation of
Decomposed
Matrices with
Floating Point

r F: A Set of Floating
AB = z c, Point Numbers.
g=1 A: AMatrixwithm *n.
Fomxr B: AMatrixwithn * p.
C:A*B

K. Ozaki, T. Ogita, S. Oishi, S.M. Rump: Error-Free Transformation of
Matrix Multiplication by Using Fast Routines of Matrix Multiplication and
its Applications, Numerical Algorithms, Vol. 59, No.1, pp.95-118,2012

Sizes 10 50 100 500 1000 5000
DGEMM
(Absolute Error) 8.77e-17 | 8.18e-16 | 1.70e-15 | 2.94e-15 | 5.33e-15 | 5.14e-15
DG.EMM 2.11e-10 | 1.82e-8 7.04e-7 | 2.71e-5 1.92e-5 3.42
(Relative Error)
Ozaki 8.77e-17 | 1.11e-16 | 1.10e-16 | 1.11e-16 | 1.11e-16 | 1.11e-16
(Absolute Error) | ©/ /¢ e e e e e
Ozaki 8.77e-17 | 1.11e-16 | 1.10e-16 | 1.11e-16 | 1.11e-16 | 1.11e-16
MRelative Error) | ™ & e Ve e e e

® GPU execution is
faster than CPU
execution when size
of matrices is larger

Numerical Experiment

density; B: Inverse matrix of 4;

GPU: NVIDIA Tesla P100 (Pascal)

® Target Matrix: 4: Identity Matrix + random sparse matrix with 90%

® Sizes of Target Matrix: 50, 100, 500, 1000, 5000, and 10000.

® Machine Environment: The Reedbush-H system at ITC, U. Tokyo.
CPU: Intel Xeon E5-2695v4 (Broadwell-EP), 2 Sockets (36 Cores)

® Sparse Format: CSR, cuSPARSE with CUDA 8.0.44 is used.

than N=1000.
cusparseDcsrmm can
reduce execution
time with maximum
factor of 22.4% to
execution with
cusparseDcsrmv.

Speedup with cusparseDcsrmv and cusparseDcsrmm on GPU
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