高レイノルズ数壁面乱流場の 大規模直接数値シミュレーション

山本 義暢 山梨大学大学院総合研究部

yamamotoy@yamanashi.ac.jp

レイノルズ	数 計算	算領域	格	子点数(解像周	度)	メモリ量	演算量
Re _τ	L_x	L_z	N_x	N_{v}	N_z	Mem	Tflop
	/h	/h	(Δx^{+})	(Δy^+)	(Δz^{+})	[TB]	/step
8000	16.0	6.4	6912	4096	5760	54	218
			(18.5)	(0.6-8.0)	(8.9)		

・計測システム

理論性能 (倍精度)

	system	#node	Mem	Tflop/s
Nagoya U.	FX1000	2048	56	6921
NIFS	FX100	2048	56	2068
Tohoku U.	SX-ACE	1024	60	262

・FFTライブラリ FX1000/FX100 FFTW(OpenMP版) SX-ACE ASL(自動並列版) ■ <u>all-to-all通信</u> FXシステム:mpi_alltoallv SX-ACE:mpi_put +スケ ジューリング

■ <u>shift通信(TDMA):</u> mpi_sendrecv により実装

5) ベンナマーク結果

・計測結果 表スペクトル法:6912x4096x5760 格子

	system	ver.	#node	s/step	Tflop/s*	efficiency
Nagoya U.	FX1000	shift	2048	2.21	101.0	1.5%
NIFS	FX100**	alltoall	2048	3.18	68.3	3.3%
Tohoku U.	SX-ACE	shift	1024	9.51	22.8	8.7%
	SX-ACE	alltoall	1024	13.57	16.0	6.1%

*IO 部分を含まない **tofu2:4レーン使用時

・当初の期待

> SX-ACE(1B/F)におけるFFT部分の実行効率は理論性能の16%程度

→FX1000(0.3B/F) 理論性能の5%程度、通信比率を40%とすると、3%ぐ らいの実行効率 (実測:1.46%)

▶ FX1000とFX100の理論性の比は3.35倍

→本コードの実行速度比は1.44倍

6)今後の課題(1)

・原因と対策:単体性能

▶ そもそも単体性能があまり良くない

	1. F		· · ·			л п ј	
	system	ver.	#node	#MPI	#AP	Gflop/s	efficiency
Nagoya U.	FX1000	shift	1	48	1	140.5	4.2%
	CX2570	shift	1	32	1	78.9	3.0%
Tohoku U.	SX-ACE	shift	1	4	1	38.7	15.1%
Kyoto U.	XC40	shift	1	64	1	80.2	2.6%
	CS400	shift	1	32	1	32.9	2.7%

表シングルノード性能:384x384x384 格子

メモリバンド幅から考えれば、単体性能で理論性能の5-6%程度は出るのでは? →コンパイルオプション等の検討; zfill

▶ ノード内のOpenMP部分の効率が悪い

→原因は調査中 fjomplib に変更?

▶ ノード内コア数(48)に対し、格子数のバランスが悪い、FX100(32コア)

6)今後の課題(2)

・原因と対策(ノード間)

▶ ノード配置の最適化

・tofu構成単位(12ノード)

・隣接シフト通信用にノード配置を指 定(MAP使用)

- →今回未対応
- ▶ 通信ソルバの性能評価

・通信部分を切り出し、実効通信速度 を評価(場合によっては置き換え)

▶ 2次元領域分割版の性能評価と最適化(富岳への接続)

72	73	 94	95	\rightarrow
48	49	 70	71	
24	25	 46	47	
0	1	 22	23	→

FIG. 通常のノード配置

FIG. MAPを使い一筆書きに設 定したノード配置: 隣接シフト 通信が効率的

まとめ

- ▶ 名古屋大学の新システム: FX1000(富岳 と同一) 2048ノードを用いて、世界最大 <u>Re条件下で壁面乱流直接数値計算コード</u> <u>のベンチマーク</u>を実施
- ▶ 単純なコード移植により<u>約100TFlop/s</u> <u>の実行演算速度</u>を確認
- ▶ 今後は、理論性能の3%程度の実行効率 を目標としてコードの最適化を行う予定
- ▶ 2048ノードクラスの計算は富岳との接続において有用、またポスト処理においても多様なシステムを活用したい

<u>本研究は、HPCIシステム利用研究課題(課題番号:</u> <u>hp200107)を通じて実施しました。</u>

